skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hilliman, Samuel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fraser, Bonnie (Ed.)
    Abstract Over 400 million years old, scorpions represent an ancient group of arachnids and one of the first animals to adapt to life on land. Presently, the lack of available genomes within scorpions hinders research on their evolution. This study leverages ultralong nanopore sequencing and Pore-C to generate the first chromosome-level assembly and annotation for the desert hairy scorpion, Hadrurus arizonensis. The assembled genome is 2.23 Gb in size with an N50 of 280 Mb. Pore-C scaffolding reoriented 99.6% of bases into nine chromosomes and BUSCO identified 998 (98.6%) complete arthropod single copy orthologs. Repetitive elements represent 54.69% of the assembled bases, including 872,874 (29.39%) LINE elements. A total of 18,996 protein-coding genes and 75,256 transcripts were predicted, and extracted protein sequences yielded a BUSCO score of 97.2%. This is the first genome assembled and annotated within the family Hadruridae, representing a crucial resource for closing gaps in genomic knowledge of scorpions, resolving arachnid phylogeny, and advancing studies in comparative and functional genomics. 
    more » « less